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We study the response of a Hodgkin-Huxley neuron stimulated by a periodic sequence of conductance pulses
arriving through the synapse in the high-frequency regime. In addition to the usual excitation threshold there
is a smooth crossover from the firing to the silent regime for increasing pulse amplitude gsyn. The amplitude of
the voltage spikes decreases approximately linearly with gsyn. In some regions of parameter space the response
is irregular, probably chaotic. In the chaotic regime between the mode-locked regions 3:1 and 2:1 near the
lower excitation threshold, the output interspike interval histogram �ISIH� undergoes a sharp transition. If the
driving period is below the critical value, Ti�T�, the output histogram contains only odd multiples of Ti. For
Ti�T� even multiples of Ti also appear in the histogram, starting from the largest values. Near T� the ISIH
scales logarithmically on both sides of the transition. The coefficient of variation of ISIH has a cusp singularity
at T�. The average response period has a maximum slightly above T�. Near the excitation threshold in the
chaotic regime the average firing rate rises sublinearly from frequencies of order 1 Hz.
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I. INTRODUCTION

Biological neurons transmit information in the form of
sharp spikes of potential difference across the lipid bilayer
forming the wall of the nerve cell. This feature of the cell’s
reaction to input signals is remarkably consistent in different
organisms and different types of neurons. The action poten-
tial spikes are assumed to be the principal carrier of informa-
tion. The early view that information is transmitted via rate
coding has evolved. It is now recognized that also the spike
time coding is used in neural systems �1,2�. While the precise
coding recipe is unknown, it is clear that the knowledge of
the response of various types of neurons to different stimuli
is fundamental to formulating the theory of information
transfer in the neural system.

Our understanding of conductance-based models of neu-
rons is largely based on the Hodgkin-Huxley �HH� model
originally formulated to describe the dynamics of the mem-
brane potential of the squid giant axon �3�. The detailed
voltage-clamp measurements of the voltage-gated potassium
and sodium ion currents led to revisions of the HH model.
The modifications required to achieve better agreement with
experiments were reviewed by Clay �4�. Studies of single
neurons and neuronal networks often employ simplified
models, such as integrate-and-fire and FitzHugh-Nagumo
�FHN� models �5,6�. It is believed that the two-dimensional
flow models such as FHN reproduce qualitatively the behav-
ior of the HH model. However, these simplifications are not
always justifiable �7–9�. In an interesting analysis of chaos in
the HH model Guckenheimer and Oliva �9� pointed out that
even the concept of a firing threshold may be more subtle
that just a smooth hypersurface dividing subthreshold and
suprathreshold membrane potentials.

Over the years many studies of HH equations were car-
ried out, including stochastic variations of various quantities
�10–12�. An important question is to what extent the quali-
tative properties of neuron response depend on the functional
form of the input signal. One frequently used form of input is
a constant plus a sinusoidal term. However, the physiological

signals are more pulselike. In a strongly nonlinear system
this may lead to substantial differences in the output.

In the sinusoidally driven HH model the excitation thresh-
old rises sharply at large frequencies. The phase diagram in
the frequency-current amplitude plane consists of three
phase-locked regions with integer ratio of the output period

to the input period, T̄o /Ti, 1:1, 2:1, and 3:1. There are also
areas of fractional locking and bistable or chaotic response
around these phase-locked states �13–15�.

It was pointed out that the edges of mode-locked plateaus
have analogies to phase transitions in the equilibrium statis-
tical mechanics. Two forms of scaling of the average devia-
tion from perfect mode-locking were found near the edges of
plateaus with constant p /q, where p and q are integers, indi-
cating the number of input spikes per number of output ac-
tion potentials �16�. The scaling has either an exponent of 1/2
or is logarithmic. In this paper we will show that scaling is
more common and appears also near the multimodal transi-
tion points.

Here, we assume the � form of postsynaptic current,
Isyn� t exp�−t /��, where t is time from the onset of the input
spike and � is the time scale of the synaptic action. This form
is close to experimental observation although it does not take
into account a more complex dynamics of the ion channel
kinetics, usually described in the Markovian scheme.

The general form of the phase diagram of the Hodgkin-
Huxley model with this input was studied initially in Ref.
�17�. However, many important questions are still to be an-
swered. One of them is the behavior of the system in the
high-frequency limit. In the following we present the model
and show the main features of high-frequency response.

II. MODEL

The Hodgkin-Huxley neuron subject to periodic conduc-
tance pulses is defined by the following set of equations �3�:

CdV/dt = − gNam3h�V − VNa� − gKn4�V − VK�

− gL�V − VL� + Iext + Isyn, �1�
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dm/dt = − �am + bm�m + am, �2�

dh/dt = − �ah + bh�h + ah, �3�

dn/dt = − �an + bn�n + an, �4�

where

am = 0.1�V + 40�/�1 − e−�V+40�/10� , �5�

bm = 4e−�V+65�/18, �6�

ah = 0.07e−�V+65�/20, �7�

bh = 1/�1 + e−�V+35�/10� , �8�

an = 0.01�V + 55�/�1 − e−�V+55�/10� , �9�

bn = 0.125e−�V+65�/80. �10�

In Eqs. �5�–�10� the voltage is expressed in mV and the rate
constants � and � are given in ms−1. The reversal potentials
of sodium, potassium, and leakage channels are VNa
=50 mV, VK=−77 mV, and VL=−54.5 mV, respectively.
The corresponding maximum conductances are gNa
=50 mV, gK=36 mS /cm2, and gL=0.3 mS /cm2. The ca-
pacity of the membrane is C=1 �F /cm2 �3�.

The synaptic current Isyn is given by the following equa-
tion:

Isyn�t� = gsyn�
n

��t − tin��Va − Vsyn� , �11�

where tin denotes the start of the nth pulse, gsyn is the con-
ductivity of the synapse, Va=30 mV is the maximum poten-
tial in the postsynaptic area, and Vsyn=−50 mV is the rever-
sal potential of the synapse. The period of the synaptic drive
is Ti= tin+1− tin. The external current Iext is set to zero, except
for a sample run shown in Fig. 1.

The time dependence is given by the function

��t� = �t/��e−t/���t� , �12�

where � is time scale characterizing the dynamics of the
synaptic action and ��t� is the Heaviside step function. We

study the dependence of the output interspike separation To
on Ti and gsyn.

Equations �1�–�10� were integrated with the fourth-order
Runge-Kutta scheme. The time step was 0.01 ms. For each
parameter set the simulation was run for 30 s. Results of the
initial three seconds of each data set were discarded to avoid
transient behavior. In the chaotic regime the data were ob-
tained from five runs for each value of the horizontal coor-
dinate.

III. RESULTS

The average output spiking rate in the form of a color
map as a function of the input period Ti and maximum syn-
aptic conductivity gsyn is presented in Fig. 2. The mode-
locked regions are shown as areas of uniform color.

For small Ti the total incoming current is approximately
constant with a small modulation, and the excitation thresh-
old rises linearly with increasing Ti, gsyn�0.04Ti mS /
�ms cm2�. For gsyn exceeding approximately 0.4Ti mS /
�ms cm2� the spiking action does not occur. We can see from
Fig. 2 that this behavior sets in below Ti�6 ms.

The obtained phase diagram is qualitatively different from
a response to a sinusoidal input, where the excitation thresh-
old diverges as 1 /Ti, for Ti→0. In general we may expect
that the constraint of charge balancing, �t

t+TiIdt=0, will have
a significant impact at high frequencies. For intermediate
values of the input period, 5�Ti�13 ms, the topology of
the phase diagram resembles results obtained with sinusoidal
input �see, e.g., Fig. 2 of Ref. �13��.

Figure 3 shows the dependence of minima and maxima of
V on gsyn for three input frequencies. The amplitude of re-
sponse decreases linearly with increasing gsyn. There is no
well-defined spiking threshold. There are intervals of param-
eter values for which the response is highly irregular and the
values of maxima and minima of V vary significantly.

A sample time dependence of the membrane potential is
shown in Fig. 4. The maxima of V span almost the entire
range between −60 and 0 mV. There is no clear separation of
spikes from the rest of the signal.

Chaotic behavior in the parameter space between the 3:1
and 2:1 mode-locked regions leads to multimodal response.
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FIG. 1. Sample voltage trace for a constant input current Iext

=10 �A /cm2.

FIG. 2. The ratio of the average output spiking rate to the input

rate, k= T̄o /Ti. Mode-locked regions with k=1–3 and k=4–8 are
shown in black and gray, respectively. Voltage peaks were counted
as spikes when V exceeded 0. For high values of gsyn the neuron
does not respond.
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The interspike separation for gsyn=0.4 mS /cm2 is shown in
Fig. 5. For Ti between 5.5 and 6 ms all-integer multiples of
input Ti with the exception of the lowest one appear in the
output interspike interval histogram �ISIH�.

It is interesting to note that ISIHs from some older experi-
ments on nerve fibers of monkeys �18� and single neurons in
the primary visual cortex of a cat �19� show some similarities
to Fig. 5. Experimental histograms are sequences of dimin-
ishing peaks occurring at integer multiples of the input inter-
spike separation. In Fig. 5 the lowest element of the se-
quence is missing due to the refractoriness of the neuron.
Similar form of ISIH was obtained in a theoretical study of a
bistable system stimulated by periodic function with additive
Gaussian noise �20�, where the presence of noise was essen-
tial. However, the multimodal histogram was also obtained
in a simulation of a deterministic modification of the HH
model �21�.

The HH model studied here does not contain stochastic
terms. The multimodal response in Fig. 5 is a result of a
deterministic nonlinearity. Thus, noise is not the only ingre-

dient enabling the reproduction of the multimodal experi-
mental ISIH. It is possible to identify the source of multimo-
dality by studying ISIH in more detail.

Close to the excitation threshold, at gsyn�0.2 mS /cm2,
there exists a transition from the odd-only ISIH to ISIH with

(b)(a) (c)

FIG. 3. Values of maxima and minima of the membrane potential V�t� as a function of synaptic conductivity gsyn for input spike intervals
Ti=2.5, 3.5, and 4.5 ms.
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FIG. 4. For high synaptic conductivities the distinction between
the action potential and the background oscillations loses its mean-
ing. This sample was obtained for Ti=4.5 ms and gsyn

=2.35 mS /cm2.

FIG. 5. �Upper� The spectrum of interspike separations of the
output signal as a function of the input period Ti for gsyn

=0.4 mS /cm2. �Lower� Detailed view of the chaotic region be-
tween Ti=5 and 6 ms. Each ISI cluster belongs to different k, where
k=2,3 ,4 ,5 , . . .. The distinction between k=2 and k=3 is blurred.
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all-integer multiples of Ti �see Figs. 6 and 7�. Near the tran-
sition the edges of high-k clusters scale logarithmically. The
scaling holds both along the Ti and gsyn axes. It can be
viewed as a competition between the odd and the even mul-
tiples of the driving period.

A clear indication of this “spectral” transition is the sin-
gular behavior of the coefficient of variation �CV� �see Fig.
8�. At the transition CV is of order 1 and k is significantly
larger than 3. The maximum k occurs approximately 0.2 ms
above the singularity of CV �see Fig. 9�. One may also think
of this shift as a result of relaxation from the constraint of
odd-only modes below T�. At T� the highest even modes
become available and this leads to the increase in k.

If such a transition were found experimentally it would be
a clear sign of the deterministic nonlinear dynamics. In the
presence of noise this sharp feature would be smeared and
would vanish if noise dominates the dynamics of the system.

IV. CONCLUSIONS

For high synaptic drives in the high-frequency regime dis-
tinguishing the action potential from the background activity
becomes problematic. In this limit the neuron is very sensi-
tive to small changes in the functional form of the signal. For
periodic drive with small time constant � and Ti below 6 ms
the width of the spiking regime along the gsyn axis scales
linearly with Ti. The quality of the neuron’s response dete-
riorates linearly with increasing gsyn. This is in contrast to
findings for a sinusoidal signal, and more generally for a
class of signals satisfying the constraint of charge balancing,
where the spiking action remains well defined in the high-
frequency limit.

A mechanism of suppression of the neuron’s activity
might help to explain self-regulating behavior of neocortical
networks. Various mechanisms of homeostatic action for
neural microcircuits were proposed �22�. It would be useful

FIG. 7. The multimodal transition at g=0.17 mS /cm2.
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FIG. 8. Coefficient of variation for g=0.17 mS /cm2. The vari-
ability near Ti=6.6 ms is due to the proximity to the firing
threshold.
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FIG. 9. The ratio k=To /Ti for g=0.17 mS /cm2. The maximum
of k is shifted to approximately 0.2 ms to the right relative to maxi-
mum of CV �see Fig. 8�.

FIG. 6. Scaling of the excitation edge of �upper� odd-only mul-
tiples of the input Ti, and �lower� all-integer multiples, in the cha-
otic region between k=2 and k=3. For g=0.2 mS /cm2, the transi-
tion occurs at T=6.541 75 ms.
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to investigate whether more realistic extensions of the
Hodgkin-Huxley model also exhibit self-regulation in re-
sponse to high-frequency inputs. The network of such neu-
rons would have a “safety switch” built in at the level of
individual cells. For Ti between 4 and 6 ms the upper critical
synaptic conductivity is of order 2 mS /cm2, which is in the
realistic range for neocortical pyramidal neurons �23�.

The input ISI of 4–8 ms is important to understanding the
dynamics of the Hodgkin-Huxley model. In the chaotic re-
gion between the k=2 and k=3 locked states the coefficient
of variation of ISI has a singularity at the transition between
the odd-only and all-integer multiples of the driving period.
The odd modes dominate in the vicinity of the k=3 state �see
Fig. 10�. The low-k �high-frequency� bands vanish logarith-
mically near the line of critical points �gsyn ,T��. The firing
rate has a minimum at Ti�T�+0.2 ms. Periodically stimu-
lated giant axons of squid have similar nonmonotonic depen-
dence of the firing rate on the current pulse amplitude be-
tween the k=2 and k=3 states �24�. This experiment also
showed the linear dependence of the firing rate on the pulse
amplitude near the threshold for Ti�T�, similar to Fig. 11.
Although the experimental pulses were rectangular, different
from the ��t� form with an exponential tail, the qualitative
features do not depend much on the precise shape of a pulse.
For short pulses the neuron’s reaction is determined mainly
by the time integral of the stimulus.

The multimodal response occurring in certain sensory
neurons may result from noise �20� or deterministic nonlin-
earity �25�. It would be interesting to look for experimental
evidence of the odd-all transition. If found, it would be clear
evidence that the neuron dynamics is dominated by nonlin-
earity, not noise.

The behavior of the model at small Ti may be useful to
both coincidence detection and estimation of the signal
strength. The optimal sensitivity in this case is inversely pro-
portional to the frequency.

Our calculation also supports the view expressed by the
authors of Ref. �9� that boundaries between various parts of
the response diagram are not always clear cut and may form
complicated patterns. This statement also applies to the ex-
citation threshold in the chaotic regime.

In the Hodgkin classification of intrinsic excitability �26�
class 1 neurons maintain firing at arbitrarily low frequencies
in response to weak inputs and have a continuous frequency-
current �f-I� curve. Class 2 neurons fire with certain rela-
tively large frequency, usually of order 40–50 Hz, when
stimulus exceeds the threshold and have a discontinuous f-I
dependence. Classes 1 and 2 neurons sometimes are de-
scribed as integrators and resonators, respectively �27�. Ac-
cording to the commonly held view a neuron cannot be an
integrator and resonator at the same time. However, we
showed that the deterministic HH neuron in a chaotic regime
near the excitation threshold may oscillate with arbitrarily
small frequencies and may perform integration at time scales
much longer than the period of its main resonance. The char-
acter of the response depends strongly on the functional form
of the stimulus and parameters of the model. A recent study
showed that the same pyramidal neurons behave as integra-
tors in vitro and resonators in vivo �28�.

The multimodal response of the HH neuron near 140–180
Hz is not a typical resonance since no particular frequency is
preferred. The multiples of the driving frequency alternate
chaotically. The average output frequency depends non-
monotonically on the stimulus amplitude. Similar nonmono-
tonic f vs I relation was found in periodically stimulated
giant axons of squid �24�. Smaller stimuli favor higher mul-
tiples of the driving period. Studies of large neuronal net-
works of various types suggest that there may be a complex
interplay between the integrating behavior and the resonant
action �22�.

The ability to precisely control the nerve cell’s potential
oscillations is important in constructing devices performing
the procedure known as deep brain stimulation �29–31�,
which operate at frequencies above 100 Hz. While our model
does not satisfy the charge-balancing constraint required in
the stimulation of in vivo systems, we believe that the present
study improves our understanding of high-frequency neural
oscillators.
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